The challenges and promise of sweat sensing | Trending Viral hub

[ad_1]

  • Vinik, A. I., Nevoret, M., Casellini, C. & Parson, H. Neurovascular function and sudorimetry in health and disease. Curr. Diab. Rep. 13, 517–532 (2013).


    Google Scholar
     

  • Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baker, L. B. & Wolfe, A. S. Physiological mechanisms determining eccrine sweat composition. Eur. J. Appl. Physiol. 120, 719–752 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • LeGrys, V., Briscoe, D. & McColley, S. Sweat Testing: Specimen Collection and Quantitative Chloride Analysis; Approved Guideline 4th edn (Clinical and Laboratory Standards Institute, 2019).

  • Hussain, J. N., Mantri, N. & Cohen, M. M. Working up a good sweat — the challenges of standardising sweat collection for metabolomics analysis. Clin. Biochem. Rev. 38, 13–34 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the POWER Study. Biol. Psychiatry 64, 907–911 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sempionatto, J. R., Moon, J.-M. & Wang, J. Touch-based fingertip blood-free reliable glucose monitoring: personalized data processing for predicting blood glucose concentrations. ACS Sens. 6, 1875–1883 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Busch, R. On the history of cystic fibrosis. Acta Univ. Carol. Med. 36, 13–15 (1990).

    CAS 

    Google Scholar
     

  • Pérez-Frías, J. et al. The history of cystic fibrosis. Open J. Pediatr. Child Health 4, 001–006 (2019).


    Google Scholar
     

  • Quinton, P. M. Physiological basis of cystic fibrosis: a historical perspective. Physiol. Rev. 79, S3–S22 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Darling, R. C., Disant’agnese, P. A., Perera, G. A. & Andersen, D. H. Electrolyte abnormalities of the sweat in fibrocystic disease of the pancreas. Am. J. Med. Sci. 225, 67–70 (1953).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Barbero, G. J., Kim, I. C. & Mcgavran, J. A simplified technique for the sweat test in the diagnosis of fibrocystic disease of the pancreas. Pediatrics 18, 189–192 (1956).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gibson, E. & Cooke, E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 23, 545–549 (1959).

  • Webster, H. L. & Rundell, C. A. Laboratory diagnosis of cystic fibrosis. Crit. Rev. Clin. Lab. Sci. 18, 313–338 (1982).

    Article 

    Google Scholar
     

  • Sato, K. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 79 (eds Adrian, R. H. et al.) 51–131 (Springer, 1977).

  • Sato, K., Feibleman, C. & Dobson, R. L. The electrolyte composition of pharmacologically and thermally stimulated sweat: a comparative study. J. Invest. Dermatol. 55, 433–438 (1970).

    CAS 

    Google Scholar
     

  • Sato, K. & Dobson, R. L. Regional and individual variations in the function of the human eccrine sweat gland. J. Invest. Dermatol. 54, 443–449 (1970).

    CAS 

    Google Scholar
     

  • Sato, K. Sweat induction from an isolated eccrine sweat gland. Am. J. Physiol. 225, 1147–1152 (1973).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Drexelius, A., Fehr, D., Vescoli, V., Heikenfeld, J. & Bonmarin, M. A simple non-contact optical method to quantify in-vivo sweat gland activity and pulsation. In IEEE Transactions on Biomedical Engineering 2638–2645 (IEEE, 2022).

  • Yanagawa, S., Yokozeki, H. & Sato, K. Origin of periodic acid–Schiff-reactive glycoprotein in human eccrine sweat. J. Appl. Physiol. 60, 1615–1622 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nicolaidis, S. & Sivadjian, J. High-frequency pulsatile discharge of human sweat glands: myoepithelial mechanism. J. Appl. Physiol. 32, 86–90 (1972).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ogawa, T. & Sugenoya, J. Pulsatile sweating and sympathetic sudomotor activity. Jpn. J. Physiol. 43, 275–289 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Schwartz, I. L. & Thaysen, J. H. Excretion of sodium and potassium in human sweat. J. Clin. Invest. 35, 114–120 (1956).

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article 

    Google Scholar
     

  • Quinton, P. M. Cystic fibrosis: lessons from the sweat gland. Physiology 22, 212–225 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nadel, E. R. Control of sweating rate while exercising in the heat. Med. Sci. Sports 11, 31–35 (1979).

    PubMed 
    CAS 

    Google Scholar
     

  • Nadel, E. R., Bullard, R. W. & Stolwijk, J. A. Importance of skin temperature in the regulation of sweating. J. Appl. Physiol. 31, 80–87 (1971).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shibasaki, M. & Crandall, C. G. Mechanisms and controllers of eccrine sweating in humans. Front. Biosci. (Schol. Ed.) 2, 685–696 (2010).

    PubMed 

    Google Scholar
     

  • Shibasaki, M., Secher, N. H., Selmer, C., Kondo, N. & Crandall, C. G. Central command is capable of modulating sweating from non-glabrous human skin. J. Physiol. 553, 999–1004 (2003).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hu, Y., Converse, C., Lyons, M. C. & Hsu, W. H. Neural control of sweat secretion: a review. Br. J. Dermatol. 178, 1246–1256 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci. 89, 40–51 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Souza, S. L., Graça, G. & Oliva, A. Characterization of sweat induced with pilocarpine, physical exercise, and collected passively by metabolomic analysis. Skin Res. Technol. 24, 187–195 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sato, K., Kang, W. H., Saga, K. & Sato, K. T. Biology of sweat glands and their disorders. I. Normal sweat gland function. J. Am. Acad. Dermatol. 20, 537–563 (1989).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sonner, Z. et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 9, 031301 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sato, F., Takemura, T., Hibino, T. & Sato, K. Lectin binding glycoproteins in human eccrine sweat. J. Invest. Dermatol. 88, 515–515 (1987).

  • Macroduct Sweat Collection System (Model 3700) Instruction/Service Manual (Wescor, 2004).

  • Huestis, M. A. et al. Sweat testing for cocaine, codeine and metabolites by gas chromatography–mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 733, 247–264 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Brueck, A., Iftekhar, T., Stannard, A. B., Yelamarthi, K. & Kaya, T. A real-time wireless sweat rate measurement system for physical activity monitoring. Sensors 18, 533 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katchman, B. A., Zhu, M., Blain Christen, J. & Anderson, K. S. Eccrine sweat as a biofluid for profiling immune biomarkers. Proteomics Clin. Appl. 12, 1800010 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matzeu, G., Fay, C., Vaillant, A., Coyle, S. & Diamond, D. A wearable device for monitoring sweat rates via image analysis. IEEE Trans. Biomed. Eng. 63, 1672–1680 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mayaudon, H., Miloche, P.-O. & Bauduceau, B. A new simple method for assessing sudomotor function: relevance in type 2 diabetes. Diabetes Metab. 36, 450–454 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baker, L. B. et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci. Adv. 6, eabe3929 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Baker, L. B. et al. Sweating rate and sweat chloride concentration of elite male basketball players measured with a wearable microfluidic device versus the standard absorbent patch method. Int. J. Sport Nutr. Exerc. Metab. 1, 342–349 (2022).

    Article 

    Google Scholar
     

  • Jia, W. et al. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85, 6553–6560 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Guinovart, T. J., Bandodkar, A. R., Windmiller, J. J., Andrade, F. & Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 138, 7031–7038 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bandodkar, A. J. et al. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Stretchable, wireless sensors and functional substrates for epidermal characterization of sweat. Small 10, 3083–3090 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Rose, D. P. et al. Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Trans. Biomed. Eng. 62, 1457–1465 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Glennon, T. et al. ‘SWEATCH’: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis 28, 1283–1289 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choi, J., Kang, D., Han, S., Kim, S. B. & Rogers, J. A. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6, 1601355 (2017).

    Article 

    Google Scholar
     

  • Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hauke, A. et al. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab Chip 18, 3750–3759 (2018).

    CAS 

    Google Scholar
     

  • Nyein, H. Y. Y. et al. A wearable patch for continuous analysis of thermoregulatory sweat at rest. Nat. Commun. 12, 1823 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tai, L.-C. et al. Methylxanthine drug monitoring with wearable sweat sensors. Adv. Mater. 30, 1707442 (2018).

    Article 

    Google Scholar
     

  • Tai, L.-C. et al. Wearable sweat band for noninvasive levodopa monitoring. Nano Lett. 19, 6346–6351 (2019).

    CAS 

    Google Scholar
     

  • Ruwe, T. Diverse drug classes partition into human sweat: implications for both sweat fundamentals and for therapeutic drug monitoring. Ther. Drug Monit. 10.1097/FTD.0000000000001110 (2023).

  • Harshman, S. W. et al. The proteomic and metabolomic characterization of exercise-induced sweat for human performance monitoring: a pilot investigation. PLoS ONE 13, e0203133 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon, K. et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat. Electron. 4, 302–312 (2021).

    Article 

    Google Scholar
     

  • Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heikenfeld, J. Non-invasive analyte access and sensing through eccrine sweat: challenges and outlook circa 2016. Electroanalysis 28, 1242–1249 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Moyen, N. E. et al. Accuracy of algorithm to non-invasively predict core body temperature using the Kenzen wearable device. Int. J. Environ. Res. Public Health 18, 13126 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, W. et al. Touch-based stressless cortisol sensing. Adv. Mater. 33, 2008465 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Natural perspiration sampling and in situ electrochemical analysis with hydrogel micropatches for user-identifiable and wireless chemo/biosensing. ACS Sens. 5, 93–102 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Paul, B., Demuru, S., Lafaye, C., Saubade, M. & Briand, D. Printed iontophoretic-integrated wearable microfluidic sweat-sensing patch for on-demand point-of-care sweat analysis. Adv. Mater. Technol. 6, 2000910 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sonner, Z., Wilder, E., Gaillard, T., Kasting, G. & Heikenfeld, J. Integrated sudomotor axon reflex sweat stimulation for continuous sweat analyte analysis with individuals at rest. Lab Chip 17, 2550–2560 (2017).

    CAS 

    Google Scholar
     

  • Peng, R. et al. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL’s to nL’s and reduction of analyte contamination from skin. Lab Chip 16, 4415–4423 (2016).

    CAS 

    Google Scholar
     

  • Reeder, J. T. et al. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. Sci. Adv. 5, eaau6356 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brebner, D. F. & Kerslake, D. McK. The time course of the decline in sweating produced by wetting the skin. J. Physiol. 175, 295–302 (1964).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Twine, N. B. et al. Open nanofluidic films with rapid transport and no analyte exchange for ultra-low sample volumes. Lab Chip 18, 2816–2825 (2018).

    CAS 

    Google Scholar
     

  • Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47, 111–128 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, Z. et al. A multi-modal sweat sensing patch for cross-verification of sweat rate, total ionic charge, and Na+ concentration. Lab Chip 19, 3179–3189 (2019).

    CAS 

    Google Scholar
     

  • Wang, S. et al. An unconventional vertical fluidic-controlled wearable platform for synchronously detecting sweat rate and electrolyte concentration. Biosens. Bioelectron. 210, 114351 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Montain, S. J., Latzka, W. A. & Sawka, M. N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol. 79, 1434–1439 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sawka, M. N. & Montain, S. J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 72, 564S–572S (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zhao, F. J. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2019).


    Google Scholar
     

  • Doolittle, J., Walker, P., Mills, T. & Thurston, J. Hyperhidrosis: an update on prevalence and severity in the United States. Arch. Dermatol. Res. 308, 743–749 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korpelainen, J. T., Sotaniemi, K. A. & Myllylä, V. V. Asymmetric sweating in stroke: a prospective quantitative study of patients with hemispheral brain infarction. Neurology 43, 1211–1214 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Foster, K. G., Hey, E. N. & O’Connell, B. Sweat function in babies with defects of the central nervous system. Dev. Med. Child Neurol. 11, 94 (2008).


    Google Scholar
     

  • Cheshire, W. P. & Freeman, R. Disorders of sweating. Semin. Neurol. 23, 399–406 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Harker, M. Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol. Physiol. 26, 92–100 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Berglund, L. G. Comfort and humidity. ASHRAE J. 40, 35–41 (1998).


    Google Scholar
     

  • Rousseau, C. R. & Bühlmann, P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. TrAC Trends Anal. Chem. 140, 116277 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bhide, A., Muthukumar, S., Saini, A. & Prasad, S. Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat. Sci. Rep. 8, 6507 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arroyo-Currás, N., Dauphin-Ducharme, P., Scida, K. & Chávez, J. L. From the beaker to the body: translational challenges for electrochemical, aptamer-based sensors. Anal. Methods 12, 1288–1310 (2020).

    Article 

    Google Scholar
     

  • Potyrailo, R. A., Conrad, R. C., Ellington, A. D. & Hieftje, G. M. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70, 3419–3425 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, F., Xue, J., Shao, J. & Jia, L. Compilation of 222 drugs’ plasma protein binding data and guidance for study designs. Drug Discov. Today 17, 475–485 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yuan, Y. et al. Oil-membrane protection of electrochemical sensors for fouling- and pH-insensitive detection of lipophilic analytes. ACS Appl. Mater. Interfaces 13, 53553–53563 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shaver, A., Curtis, S. D. & Arroyo-Currás, N. Alkanethiol monolayer end groups affect the long-term operational stability and signaling of electrochemical, aptamer-based sensors in biological fluids. ACS Appl. Mater. Interfaces 12, 11214–11223 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Watkins, Z., Karajić, A., Young, T., White, R. & Heikenfeld, J. Week-long operation of electrochemical aptamer sensors: new insights into self-assembled monolayer degradation mechanisms and solutions for stability in biofluid at body temperature. ACS Sens. 8, 1119–1131 (2023).

  • Xu, J. & Lee, H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors 8, 66 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H., Dauphin-Ducharme, P., Ortega, G. & Plaxco, K. W. Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood. J. Am. Chem. Soc. 139, 11207–11213 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Das, S. K., Nayak, K. K., Krishnaswamy, P. R., Kumar, V. & Bhat, N. Review—electrochemistry and other emerging technologies for continuous glucose monitoring devices. ECS Sens. Plus 1, 031601 (2022).

    Article 

    Google Scholar
     

  • Troudt, B. K., Rousseau, C. R., Dong, X. I. N., Anderson, E. L. & Bühlmann, P. Recent progress in the development of improved reference electrodes for electrochemistry. Anal. Sci. 38, 71–83 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pirovano, P. et al. A wearable sensor for the detection of sodium and potassium in human sweat during exercise. Talanta 219, 121145 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Forlenza, G. P., Kushner, T., Messer, L. H., Wadwa, R. P. & Sankaranarayanan, S. Factory-calibrated continuous glucose monitoring: how and why it works, and the dangers of reuse beyond approved duration of wear. Diabetes Technol. Ther. 21, 222–229 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dautta, M. et al. Tape-free, digital wearable band for exercise sweat rate monitoring. Adv. Mater. Technol. 8, 2201187 (2023).

  • Emaminejad, S. et al. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform. Proc. Natl Acad. Sci. USA 114, 4625–4630 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. A. M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol. 121, 803–816 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wiorek, A., Parrilla, M., Cuartero, M. & Crespo, G. A. Epidermal patch with glucose biosensor: pH and temperature correction toward more accurate sweat analysis during sport practice. Anal. Chem. 92, 10153–10161 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Francis, J., Stamper, I., Heikenfeld, J. & Gomez, E. F. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement. Lab Chip 19, 178–185 (2019).

    CAS 

    Google Scholar
     

  • Moon, J.-M. et al. Non-invasive sweat-based tracking of l-dopa pharmacokinetic profiles following an oral tablet administration. Angew. Chem. Int. Ed. Engl. 133, 19222–19226 (2021).

    Article 

    Google Scholar
     

  • Montanga, W., Kligman, A. M. & Carlisle, K. S. Atlas of Normal Human Skin (Springer, 1992).

  • Illigens, B. M. W. & Gibbons, C. H. in Handbook of Clinical Neurology (eds Levin, K. H. & Chauvel, P.) Vol. 160, 419–433 (Elsevier, 2019).

  • [ad_2]

    Check Also

    Like moths to a flame? We may need a new phrase. | Trending Viral hub

    [ad_1] It used to be that you could put a black light on the edge …

    Scotland made big climate promises. They are now “out of reach.” | Trending Viral hub

    [ad_1] Climate promises are difficult to keep. Scotland is the most recent, perhaps most surprising, …

    Heavy rains cause rare flooding in Dubai | Trending Viral hub

    [ad_1] Heavy rain lashed parts of the Middle East on Tuesday, closing schools in the …

    Leave a Reply

    Your email address will not be published. Required fields are marked *